2021-03-10-数值分析-Day13-差分公式
7.1 - 7.4 差分公式 一阶常微分方程初值问题 一阶常微分方程初值问题的一般形式为: \[ \left\{\begin{array}{l}\displaystyle\frac{dy}{dx}=f(x,y),\quad a\le x\le b\\y(a)=\alpha\end{array}\right. \] 其中 \(f(x,y)\) 为已知函数, \(\alpha\) 为给定的值。 在许多数学模型中,上述方程通常以 \(x\) 描述时间,而定解条件 \(y(a)=\alpha\) 则给出了函数 \(y(x)\) 在初始时刻的取值。因此称为初值问题。 问题: + 上述方程何时存在唯一解 + 如何计算 \(y(x)\) Lipschitz条件: 若函数 \(f(x,y)\) 在区域 \(\{a\le x\le b,\ m<y<M\}\) 上连续,满足 \[ \forall y,\bar{y},\ |f(x,y)-f(x,\bar{y})|\le L|y-\bar{y}| \] 其中 \(L>0\) 为Lipschitz常数(此处Lipschitz常数可以 \(\ge1\) ),则初值问题在初始时刻 \(a\) 的某个邻域上存在唯一解。 (不满足Lipschitz条件时,不一定存在唯一解。) 构造一阶常微分方程初值问题数值解法 假设初值问题的解 \(y=y(x)\) 唯一存在且足够光滑。对求解区域 \([a,b]\) 做等距剖分 \(a=x_0<x_1<x_2<\dots<x_n<\dots<x_N=b\) 。称 \(h=(b-a)/N\) 为剖分步长, \(x_n=a+nh,\ n=0,1,\dots,N\) 为剖分节点。数值解法即求精确解 \(y(x)\) 在剖分节点 \(x_n\) 上的值 \(y(x_n)\) 的近似值 \(y_n\) 。...