2022-04-17-GAMES104现代游戏引擎-Lecture5-Lighting, Materials and Shaders
Lecture05 Lighting, Materials and Shaders The Rendering Equation \[ {\displaystyle L_{\text{o}}(\mathbf {x} ,\omega _{\text{o}},\lambda ,t)=L_{\text{e}}(\mathbf {x} ,\omega _{\text{o}},\lambda ,t)\ +\int _{\Omega }f_{\text{r}}(\mathbf {x} ,\omega _{\text{i}},\omega _{\text{o}},\lambda ,t)L_{\text{i}}(\mathbf {x} ,\omega _{\text{i}},\lambda ,t)(\omega _{\text{i}}\cdot \mathbf {n} )\operatorname {d} \omega _{\text{i}}} \] 多重挑战: 如何得到入射光 Visibility to Lights, Shadow Light Source Complexity, 尤其面光源 如何快速地积分 如何计算次级光源,全局光照,无限递归 从简单开始 Ambient + Simple Light == Result 环境光贴图反射 相当于Rendering Equation特例化 Blinn-Phong \[ \begin{aligned}L&=L_{\text{ambient}}+L_{\text{diffuse}}+L_{\text{specular}}\\ &=k_{\text{ambient}}I_{\text{ambient}}+k_{\text{diffuse}}(I/r^2)\max(0,\mathbf n\cdot\mathbf l)+k_{\text{specular}}(I/r^2)\max(0,\mathbf n\cdot\mathbf l)^p \end{aligned} \] 问题:...