2022-04-16-GAMES202高质量实时渲染-Lecture5-6-Environment Light
Lecture 5-6 Environment Lighting Recap 环境光贴图 球面贴图 Spherical Map / 立方体贴图 Cube Map Shading from Environment Lighting / Image-Based Lighting (IBL) 解渲染方程(不考虑阴影) \[ L_o(\mathrm p,\omega_o)=\int_{\Omega^+}L_i(\mathrm p,\omega_i)f_r(\mathrm p,\omega_i,\omega_o)\cos\theta_i\xcancel{V(\mathrm p,\omega_i)}\,\mathrm d\omega_i \] 蒙特卡洛积分——数值解、大量采样,非常慢 PS: 一旦涉及采样,就很难实时,近年开始有一些进展 观察: glossy BRDF : BRDF覆盖很小 diffuse BRDF : BRDF覆盖大,但是平滑 因此考虑近似方法 \[ \int_\Omega f(x)g(x)\,\mathrm dx\approx\dfrac{\int_{\Omega_G}f(x)\,\mathrm dx}{\int_{\Omega_G}\,\mathrm d x}\cdot\int_\Omega g(x)\,\mathrm dx \] (该式在 \(g(x)\) 范围小/结果平滑时较为准确) 则有 \[ L_o(\mathrm p,\omega_o)\approx\dfrac{\int_{\Omega_{f_r}}L_i(\mathrm p,\omega_i)\,\mathrm d\omega_i}{\int_{\Omega_{f_r}}\,\mathrm d\omega_i}\int_{\Omega^+}f_r(\mathrm p,\omega_i,\omega_o)\cos\theta_i\,\mathrm d\omega_i \] \(\dfrac{\int_{\Omega_{f_r}}L_i(\mathrm p,\omega_i)\,\mathrm d\omega_i}{\int_{\Omega_{f_r}}\,\mathrm d\omega_i}\) 表示对环境光贴图做模糊化处理,即滤波...